إعـــــــلان

تقليص
لا يوجد إعلان حتى الآن.

تاريخ علم المثلثات

تقليص
X
 
  • تصفية - فلترة
  • الوقت
  • عرض
إلغاء تحديد الكل
مشاركات جديدة

  • تاريخ علم المثلثات

    تاريخ علم المثلثات عند المسلمين
    لا جرم أن دراسة علم المثلثات بشكل علمي منظَّم مستقلٍّ عن الفَلك - ترجع إلى العلماء المسلمين، تؤكد هذه الحقيقةَ شهادةُ مؤرخ العلوم الشهير جورج سارطون حيث يقول: "إن أعظم الابتكارات العربية في الرياضيات والفَلك كانت شيئين: علم الحساب الجديد، وعلم المثلثات الجديد... وقد وقع جمْعُ العلماء المسلمين بين المصدرين اليوناني والسنسكريتي، ثم ألقحوا الآراء اليونانية بالآراء الهندية".

    فاليونانيون لم يتجاوزوا في علم المثلثات حدَّ اكتشاف بعض النِّسب في المثلثات المنتظمة.

    أما الهنود، فقد تقدموا في علم المثلثات شوطًا أطول فيما يتعلق بقياس الجيب؛ (قياس الزاوية المفروضة بالضلع المقابل لها مقسومًا على الوتر في المثلث القائم للزاوية).

    أما المسلمون، فكان أول ما فعلوه في المثلثات تنظيم المعلومات التي تناولوها من الهنود بخاصة، ثم جعلوا منها علمًا خاصًّا مستقلاًّ عن علم الفَلك، وكان مما أخذه المسلمون عن الهنود الجيب، فحلَّ عندهم محل وتَر ضعف القوس، الذي كان يستعمله اليونان.

    وكان لهذا الاستخدام فوائدُ عظيمة في تسهيل حلول المسائل الرياضية المتعلقة بذلك.

    والمسلمون هم أول من أدخل الظل (المماس)؛ أي قياس الزاوية المفروضة بالضلع المقابل لها، مقسومًا على الضلع المجاور في المثلث القائم الزاوية، واستنبطوا ظل التمام، وهو قياس الزاوية المفروضة بالضلع المجاور، مقسومًا على الضلع المقابل.

    من أجل ذلك؛ عُرف علمُ المثلثات عند العرب بعلم الأنساب أيضًا؛ لأنه يقوم على الأوجه المختلفة الناشئة من النسبة بين أضلاع المثلث.

    لم تقتصر جهود المسلمين على دراسة المثلثات المستوية، بل تناولوا المثلثات الكروية القائمة الزاوية، وعرفوا القواعد المختصة بها مع نهاية القرن الثالث الهجري.

    ومن ثم؛ تمكنوا من حل المسائل المختصة بعلم المثلثات الكروية القائمة الزاوية.

    ويشهد لوكي lucky للعلماء الرياضيين المسلمين بالعمل المستقل الذي أحدث انقلابًا في علم المثلثات؛ إذ يقول: "لقد وُضِعت في عام ألف للميلاد (٣٩٠هـ) معادلات تربط بين دوالي أضلاع وزوايا المثلث الكروي، وبخاصة وضع الجيب الفَلكي، فقد حل المثلث في هذا الصدد محل ذي الأضلاع الأربعة المتكامل الصعب، كما حلت أربعة حدود فقط محل ستة حدود في مساواة منلاووس، فهنا نجد مولد علم المثلثات الفلكية الحقيقية أو حساب المثلثات الكروية".

    وقد أشار لوكي إلى أن المسلمين توصلوا - نتيجةَ بحوثهم تلك - إلى معرفة المثلث القطبي الذي أدخله (سنليوس/snellius) أوربا من قبل في القرن الحادي عشر للهجرة/ السابع عشر للميلاد.

    وفي كتاب المجسطي الذي وضعه أبو الوفا البوزجاني أول دراسة منهجية مستقلة لأصول علم المثلثات، أورد أبو الوفاء - في كتابه هذا - طريقةً استقرائية جديدة في حساب جداول الجيب والظل وظل التمام.

    كذلك عمل ابن يونس المصري جداول مثلثية رفيعة المستوى، فضلاً عن أنه (ابن يونس) وضع المساواة المثلثية الآتية:



    وكان لهذه المساواة - كما يذكر سوتر - "منزلة كبرى - قبل اكتشاف اللوغريتمات - عند علماء الفَلَك في تحويل العمليات المعقدة لضرب العوامل المقدرة بالكسور الستينية في حساب المثلثات إلى عمليات (جمع).....".

    ويذكر يوشكفيتش juschkewitsch وتروبفكه tropfke أن هذه المساواةَ نفسها التي استخدمها تيخوابراه Tycho Brahe نحو عام ٩٨٨هـ/١٥٨٠م.

    وقد برع أبو سعيد عبدالرحمن بن أحمد بن يونس المصري (ت ٣٩٨هـ/١٠٠٧م) في علم المثلثات وأجاد فيه، وبحوثه فيه فاقت بحوثَ كثير من العلماء، وكان لها منزلة رفيعة عند الرياضيين، وأثرٌ كبير في تقدم علم المثلثات، وفي زمنه استعملت الخطوط المماسة في مساحة المثلثات.

    وممن نبغ في علم المثلثات بعامة، والمثلثات الكروية بخاصة: العالم الفلكي جابر بن الأفلح (أبو محمد، توفي نحو منتصف القرن السادس الهجري/ الثاني عشر الميلادي)، كان له أثرٌ كبير في تقدم علم المثلثات خلال عصر النهضة في أوربا؛ حيث كان له بحوث مبتكرة، لم يُسبَق إليها، تستعمل في حل المثلثات الكروية القائمة، وزاد معادلة على المعادلات الأربع المنسوبة إلى بطليموس، وجعل قاعدة "الأبعاد الأربعة" أو "الأقدار الأربعة" في حسابه الخاص بالمثلثات الكروية أساسًا لاستخلاص قوانينه، فوضع مساواة مثلثية جديدة لم يسبقه إليها أحد، عرفت في الغرب "بنظرية جابر".

    تعطى بالمعادلة الآتية:
    جتا١= جتا أَ × جا ب

    وما هذه المعادلة إلا إحدى المعادلات الست التي تستعمل في حل المثلثات القائمة الزاوية، تلك المعادلات التي شرحها الطوسي في كتابه "شكل القطاع".

    ومما لا شك فيه أن بعض الباحثين الأوربيين اطلعوا على مآثر المسلمين في المثلثات، ونقلوها إلى لغاتهم، ولعل أول من أدخلها ريجيومونتانوس regiomontanous (ت٨٨١ هـ/ 1476م)؛ فقد ألَّف فيها وفي غيرها من العلوم الرياضية، وكان أهمها "كتاب المثلثات De triangulis amnimodis"، وقد ادعى أن هذا الكتابَ من مستنبطاته، إلا أن البحث والدراسة أكدا - كما يذكر سزكين نقلاً عن تروبفكه Tropfke - أن ريجيومونتانوس أخذ الكثيرَ من كتاب جابر بن الأفلح، بل إنه أخذ الأشكال بحروفها الأبجدية كما وردت في "كتاب الهيئة" لجابر.

    ومما يذكر أخيرًا أن المساواة التي استخرج الكاشي بواسطتها مقدار الدرجة الواحدة - فكان ٠١٧٤٥٢٤٠٦٤٣٧٢٨٣٥١،٠ بالتقدير الدائري - وردت عند فيته viete.

    وهذه المساواة تعطى بالشكل الآتي:


    هذا، ويذهب سميث smith إلى القول في كتابه "تاريخ الرياضيات": إنه من المحتمل جدًّا أن العرب عرفوا العلاقة المثلثية الآتية:


    ومن الأمور المهمة التي أنجزها علماء الرياضيات المسلمون كذلك - إيجادُهم بعض العلاقات بين الجيب وبين الظل؛ فقد أوجد أبو الوفا البوزجاني (٣٨٨هـ/٩٩٨م) طريقةً جديدة لحساب جداول الجيب تؤول إلى قيمٍ تدل على المستوى الرفيع الذي وصل إليه علمُ المثلثات عند المسلمين.

    ويَدين الغربُ للمسلمين في معرفة طريقة حساب جيب زاوية تساوي ٣٠ دقيقة؛ فقد وردت قيمتها في الجداول التي وضعها أبو الوفاء البوزجاني، ثمانية أرقام عشرية.

    وهذه القيمة تتفق مع القيمة الحقيقية للجيب، ومن مبتكرات المسلمين أيضًا إيجادُ قيم الزوايا بطرق جبرية؛ فقد تمكن البتاني (ت٣١٧هـ/٩٢٩م) من معرفة الزاوية م في العلاقة المثلثية الآتية:


    وهذا يدلُّ على خصب قريحة البتاني، وهضْمِه لبحوث الهندسة والجبر والمثلثات هضمًا نشأ عنه الإبداعُ والابتكار.

    ولابن الهيثم أعمال جديرةٌ بالذكر في مجال علم المثلثات، وبخاصة تطبيق ما يسمَّى شكلَ ظل التمام في المثلثات الكروية على المثلث الكروي لسطح الأرض، وبذلك فقد سبق ابنُ الهيثم - على رأي تروبفكه Tropfke - فيته viete الذي جدَّد تطويره.

    هذا، ويُعزى إلى ابن الهيثم رسالة وُجدت ترجمتها باللغة اللاتينية بعنوان: De"cre pusculis، وهي استخراج ارتفاع طبقة الهواء (الجو) باستخدام علم المثلثات، كان لها - منذ طباعتها في ليزابون lissabon عام ٩٤٩هـ/١٥٤٢م - تأثيرٌ عظيم على الغرب؛ فابن الهيثم في هذه الرسالة يُعَد - كما يذكر schramm - أول فيزيائي على الإطلاق قام بأول خطوة في إدراك مفهوم الجو بالمعنى الفيزيائي.

    قد تعزى هذه الرسالة إلى أبي عبدالله محمد بن يوسف بن أحمد بن معاد، أيًّا كان فإنها تعزى في كل الأحوال إلى عالِم مسلم.

    ولقد ألَّف نصير الدين الطوسي كتابًا في المثلثات، فريدًا في بابه، فريدًا من نوعهِ، وهو "كتاب الشكل القطاع" ترجمه الغربيُّون إلى اللاتينية والفرنسية والإنكليزية، وبقِيَ قرونًا عديدة مصدرًا لعلماء أوروبا يستقُون منه معلوماتِهم في المثلثات المستوية والكروية على السواء.

    وأخيرًا، فإن "سيديُّو" أنصف المسلمين إذ قال: "زُعِمَ - في زمن غير قصير - أن العرب لم يصنعوا غير استنساخ مؤلَّفات اليونان، ولا يؤيد مثلَ هذا الزعم في الوقت الحاضر غيرُ جاهلٍ ضالٍّ، فنشكر لمدرسة بغداد ما خلعتْه من شكل على علم المثلثات الكروية، فضلاً عن حفظِها لأهم مؤلفات علماء الإسكندرية".

    المصدر: لمحات في تاريخ العلوم الكونية عند المسلمين
    


  • #2
    مثال عن بعض المثلثات

    الملفات المرفقة

    تعليق


    • #3
      بسم الله

      أخي adorer

      أولا أشكرك على ما طرحت من طرح عام لعلم المثلثات

      ثانيا
      أرجو منك تبسيط تحليلك قدر ما تستطيع حتى تعم الفائدة بشكل أكبر

      وذلك بطرح متى يتم تطبيق علم المثلثات في الإشارة التركية
      وهل توجد اشارات بعينها أم لا؟

      ثالثا ذكرت الطريقة التي استخدمها الجيش العثماني، هل تذكرها لنا بتفصيل أكثر؟

      رابعا لدي حجر كبير في وسط شعيب وحجر ضخم في طرف جبل والطرف الاخر منه بين حجرين حجر مغروس
      لونه يختلف عن الموجود في المكان
      هل يمكن تطبيق علم المثلثات عليه؟
      مع العلم انه الرسم بين ما ذكرت يمثل مثلث قائم الزاوية تقريبا


      ألف شكر

      تعليق


      • #4
        اخي العزيز
        هذه الامثله تم الحصول عليها من عناء ليست بسهوله وهذه المثلثات استخدمت من قبل الضباط وخصوصا الهندسه العسكريه
        وما يتشعب منها في غالب الاحيان نظن ان الاشاره هي التي توصل للدفين وهذا خطأ الاشاره موجوده على ارض الواقع صح لغرض تحليلها او اخذ قياس ما منها ولكن التطبيق لا يكون من خلالها تان شي المثلث التركي عندما يتم بناؤه على ارض الواقع لا يمكنك معرفته يكون مبني على نقطه واحده تم وضعها واحتمال كبيير تكون رصاصه او اكثر مرصوصه ليست مقذوفه
        او رصاصة وغلافها يمكن يكون اكثر من رصاصة لكن رح يكون في شي مميز مثل ما ذكرت الان هذه نقطة انطلاق لبناء مثلث فيثاغورس ٣/٤/٥
        كما هو في الصوره اعلاه اصعب ما في الموضوع حصولك على نقطة انطلاق الان بعد معرفة نقطة الانطلاق يتم رسم مثلث من خلال النقطة الانطلاق وربطها بثوابت موجوده اصلا وتراها ولكن لا يمكنك معرفتها كيف يعني حددنا مثلا الرصاصة النقطة الاولى على سطح بئر النقطه الثانيه فراضا تكون مدخل ماء المصفاه او المعصره الان تشكل زاويه اربط بينهما خط يصبح وتر وهنا اصبح لديك مثلث قائم الزاويه الان ينقصك اطوال الاضلع ومن هنا يكمن اللغز اطوال المثلث وخصواصا في هذه المرحله قد تحصل عليه من خلال الاشارات الموجوده على الموقع واكثر رقم ١١ومضاعفاتها او ٩ومضاعفاتها عمليه ليست بالسهله لكنها حقيقية ويكون الدفين على احد روؤس الوتر او رأسين الوتر

        تعليق


        • #5
          اي مثلث تراه بعينك لا يؤدي للدفين انما يؤدي اما لاشاره او جثه او عتاد ويمكن لا لكن ممكن ينتج عندك اتجاهات عده من هذا المثلث المتساوي الاضلاع كما ذكرت سابقا لكن المثلث المخفي دات نقطة انطلاق واحده ويمكن تكون مخفية ايضا يكون هو المطلوب

          تعليق


          • #6
            مشكور جدا على هذا الطرح

            sigpic

            تعليق


            • #7
              المشاركة الأصلية بواسطة باحث متعلم مشاهدة المشاركة
              بسم الله

              أخي adorer

              أولا أشكرك على ما طرحت من طرح عام لعلم المثلثات

              ثانيا
              أرجو منك تبسيط تحليلك قدر ما تستطيع حتى تعم الفائدة بشكل أكبر

              وذلك بطرح متى يتم تطبيق علم المثلثات في الإشارة التركية
              وهل توجد اشارات بعينها أم لا؟

              ثالثا ذكرت الطريقة التي استخدمها الجيش العثماني، هل تذكرها لنا بتفصيل أكثر؟

              رابعا لدي حجر كبير في وسط شعيب وحجر ضخم في طرف جبل والطرف الاخر منه بين حجرين حجر مغروس
              لونه يختلف عن الموجود في المكان
              هل يمكن تطبيق علم المثلثات عليه؟
              مع العلم انه الرسم بين ما ذكرت يمثل مثلث قائم الزاوية تقريبا


              ألف شكر
              ................................
              نعم يوجد دغائن تم وضعها من خلال نظرية المثلثات
              ارجع أبحث عن حلول المسمار العثماني على طريقــة الخبير
              بـــاحث البلوي
              .....................

              تعليق


              • #8
                أخي adorer

                ألف شكر

                تعليق


                • #9
                  المشاركة الأصلية بواسطة بارق السيف مشاهدة المشاركة
                  ................................
                  نعم يوجد دغائن تم وضعها من خلال نظرية المثلثات
                  ارجع أبحث عن حلول المسمار العثماني على طريقــة الخبير
                  بـــاحث البلوي
                  .....................
                  أخي بارق السيف

                  الله يسامح باحث
                  أشغلني بالدفائن بعد ما دخلت لموقع قدماء بمحض الصدفة

                  أعلم أن الدفائن تم الدفن بها عن طريق المثلثات
                  سؤالي كان حول شروط التطبيق


                  ألف شكر

                  تعليق


                  • #10
                    اخواني الاعزاء انا قمت بطرح تجربة سنوات علا وعسى حد ما يستفيد من معلومه مهما كانت صغيره
                    قد تفيد في حل او تودي الى نتيجة لشخص ما
                    وشكرا لكم جميعا

                    تعليق


                    • #11
                      اشكرك على هذا الشرح المفصل ولكن هل بنطبق على هذا المثلث
                      الملفات المرفقة

                      تعليق


                      • #12
                        لا ينطبق على هذا المثلث اخي ابو همام وقلت اي مثلث واضح وتراه بعينك لا يودي الى الهدف وكل الاشارات التي تراها لا تودي الى الهدف وبالنسبة للمثلثات المطلوبه مخفيه بالمطلق ولها نقطة انطلاق واحده اما بالنسبة لموضوعك بتقدري ينقص اشارات اخرى اخي العزيز الضباط ما وضع مثلث على الارض عشان انا وانت نروح بأتجاه المثلث ونطلع دفين حطها ويقصد فيها غرض لنفسه يعني اجد بداخل الصورة المرفقة مايشيه السهم جربت اخي تنطلق بأتجاهين حسب اتجاهات المثلثين والمسافه للشمال ١١/١٨/٢٢/٢٧/٣٣/٣٦/٥٤وللجنوب على نفس القياسات وشوف قدتجد اشارات ثانيه عملية بحث عن اشارة على المسافات التي ذكرتها لك ارجح انك تجد كمان اشارات بأتجاه المثلث الذي امامه النقطة او الدائره كما هو مبين بالرسم

                        تعليق


                        • #13
                          اخ ابو همام هل تعرف قياس عرض الصخرة التي عليها الاشارة وشوف اطرفها المدفونه ليس على عمق هل يوجد كسر بها من كلا طرفيها تحت التراب بمساف قليله جدا لا تزيد عن ١٥سم اذا وجدت كسر في جه ابحث على الجهة الثانيه قدتجد كسر ثان تقيس المسافه بين الكسرين حسب الرسم رح يكون شرق غرب اذا وجدت صورها وتاكد ينقص عدد من الاشارات لديك ان شاء الله يهديك للصواب

                          تعليق


                          • #14
                            اشكرك اخي على هذا الرد ويهدي الجميع الى الصواب ان شاء الله

                            تعليق


                            • #15
                              المشاركة الأصلية بواسطة باحث متعلم مشاهدة المشاركة
                              أخي بارق السيف

                              الله يسامح باحث
                              أشغلني بالدفائن بعد ما دخلت لموقع قدماء بمحض الصدفة


                              أعلم أن الدفائن تم الدفن بها عن طريق المثلثات
                              سؤالي كان حول شروط التطبيق


                              ألف شكر
                              ....................................
                              .................................................
                              ما هي الاشارة الموجودة لديك
                              فيوجد هنا الكثير من الاخوة الخبراء
                              وباذن الله سيتعاونون معك

                              تعليق

                              يعمل...
                              X